On the photolysis of simple anions and neutral molecules as sources of O-/OH, SO(x)- and Cl in aqueous solution.
نویسنده
چکیده
This contribution examines the aqueous phase photolysis processes of simple anions such as nitrate, nitrite, peroxodisulfate and neutral molecules such as H2O2. The review includes new results on absolute effective quantum yields for the photodissociation processes of NO3(-), NO2(-), S2O8(2-), HSO5(-), S2O6(2-), HOCl, and chloroacetone in an aqueous solution. The quantum yields for the photolysis of nitrate and nitrite have also been determined as a function of temperature. Models to interpret the wavelength and the temperature dependencies of the quantum yields for the different systems are discussed and a simple model treatment is developed to quantify the effects of (i) impulse conservation, (ii) electrostatic interaction (e.g., ion-dipole, dipole-dipole and coulomb interaction between the photofragments directly after photolytic fragmentation), and (iii) diffusion and recombination. The combined impulse-interaction-diffusion (IID) model is compared to the experimentally observed effective radical formation quantum yields and reasonable agreement is found for a number of systems. It is shown that the temperature dependencies for effective quantum yields of photolysis processes in aqueous solution are not only governed by the temperature dependence of the viscosity of water but also determined by the temperature dependence of the rate constants of the photofragment recombination reactions.
منابع مشابه
Cell damaging by irradiating non-thermal plasma to the water: Mathematical modeling of chemical processes
Recently non-thermal plasma (NTP) is applied for many therapeutic applications. By NTP irradiating to the tissues or cell-lines, the water molecules (H2O) would be also activated leading to generate hydrogen peroxide (H2O2). By irradiating plasma to bio-solution, its main output including vacuum UV to UV causes the photolysis of H2O leading to generat...
متن کاملModeling of Refractive Indices for Binary Aqueous Solutions of Some Alkane Polyols at Constant Temperature and Pressure
In this research, a theoretical study has been undertaken on the density and also on the relationship between refractive index and density for aqueous solutions. A simple linear equation is suggested to show this relationship. Also, a semi-empirical equation has been developed for estimating the constant of this linear equation. By using our suggested equations, the refractive indices of aq...
متن کاملCharacterization of Fe3O4/rGO Composites from Natural Sources: Application for Dyes Color Degradation in Aqueous Solution
The magnetite (Fe3O4) nanoparticle and graphene oxide (GO) have become interesting materials due to their advanced applications. In this work, we investigated the fabrication of Fe3O4 nanoparticles (NPs) from iron sands and reduced graphene oxide (rGO) NPs from natural graphite. The core-shell fabrication of the Fe3O4/rGO was co...
متن کاملPreparation and Characterization of Nano ZnFe2O4 Supported on Copper Slag and its Effects on the Degradation of p-Xylene Aqueous Solution
One of the problems in removing pollutants from water by photocatalytic methods is the separation of the catalyst from the solution. In this study, the catalyst stabilization method was used to solve this problem. Nano ZnFe2O4 supported on Copper Slag (CS) produced in this research is an environment-friendly, simple and cost-effective catalyst. ZnFe2O4</su...
متن کاملSynthesis of Copper Hydroxide Nitrate (Cu2(OH)3NO3) Micro-Sheets by Plasma Electrolysis of Cu(NO3)2 Aqueous Solution in Atmospheric Air
In the present paper, using a cathodic pin-to-solution electrical discharge electrolysis setup, interaction of the atmospheric air plasma with aqueous solution of copper nitrate and its possibility for synthesis of nano-materials is investigated. An AC (50 Hz) high-voltage power supply (5 kV) with rectified current is used for electrical discharge of the air between a metal pin and the solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 9 30 شماره
صفحات -
تاریخ انتشار 2007